Sabado, Marso 23, 2013


NETWORK CABLING

 

What is Network Cabling?

Cable is the medium through which information usually moves from one network device to another. There are several types of cable which are commonly used with LANs. In some cases, a network will utilize only one type of cable, other networks will use a variety of cable types. The type of cable chosen for a network is related to the network's topology, protocol, and size. Understanding the characteristics of different types of cable and how they relate to other aspects of a network is necessary for the development of a successful network.
Network Cabling is a universal system; that supports digital as well as analog signal transmissions, in which the telecommunication outlets are installed even in locations where they are not needed at the moment of installation, that use data cables with four twisted pairs and fiber cables, in which long technical and also moral service life is expected, and whose correct functionality is as important for a company as the functioning of the electrical distribution system or any other system in company’s infrastructure.
The following sections discuss the types of cables used in networks and other related topics.
  • Unshielded Twisted Pair (UTP) Cable
  • Shielded Twisted Pair (STP) Cable
  • Coaxial Cable
  • Fiber Optic Cable
  • Cable Installation Guides
  • Wireless LANs
  • Unshielded Twisted Pair (UTP) Cable
Twisted pair cabling comes in two varieties: shielded and unshielded. Unshielded twisted pair (UTP) is the most popular and is generally the best option for school networks (See fig. 1).
Fig.1. Unshielded twisted pair
The quality of UTP may vary from telephone-grade wire to extremely high-speed cable. The cable has four pairs of wires inside the jacket. Each pair is twisted with a different number of twists per inch to help eliminate interference from adjacent pairs and other electrical devices. The tighter the twisting, the higher the supported transmission rate and the greater the cost per foot. The EIA/TIA (Electronic Industry Association/Telecommunication Industry Association) has established standards of UTP and rated six categories of wire (additional categories are emerging).

Categories of Unshielded Twisted Pair

Category
Speed
Use
1
1 Mbps
Voice Only (Telephone Wire)
2
4 Mbps
Local Talk & Telephone (Rarely used)
3
16 Mbps
10BaseT Ethernet
4
20 Mbps
Token Ring (Rarely used)
5
100 Mbps (2 pair)
100BaseT Ethernet
1000 Mbps (4 pair)
Gigabit Ethernet
5e
1,000 Mbps
Gigabit Ethernet
6
10,000 Mbps
Gigabit Ethernet

 

Unshielded Twisted Pair Connector

The standard connector for unshielded twisted pair cabling is an RJ-45 connector. This is a plastic connector that looks like a large telephone-style connector (See fig. 2). A slot allows the RJ-45 to be inserted only one way. RJ stands for Registered Jack, implying that the connector follows a standard borrowed from the telephone industry. This standard designates which wire goes with each pin inside the connector.
Fig. 2. RJ-45 connector

Shielded Twisted Pair (STP) Cable

Although UTP cable is the least expensive cable, it may be susceptible to radio and electrical frequency interference (it should not be too close to electric motors, fluorescent lights, etc.). If you must place cable in environments with lots of potential interference, or if you must place cable in extremely sensitive environments that may be susceptible to the electrical current in the UTP, shielded twisted pair may be the solution. Shielded cables can also help to extend the maximum distance of the cables.
Shielded twisted pair cable is available in three different configurations:
1.      Each pair of wires is individually shielded with foil.
2.      There is a foil or braid shield inside the jacket covering all wires (as a group).
3.      There is a shield around each individual pair, as well as around the entire group of wires (referred to as double shield twisted pair).

Coaxial Cable

Coaxial cabling has a single copper conductor at its center. A plastic layer provides insulation between the center conductor and a braided metal shield (See fig. 3). The metal shield helps to block any outside interference from fluorescent lights, motors, and other computers.
Fig. 3. Coaxial cable
Although coaxial cabling is difficult to install, it is highly resistant to signal interference. In addition, it can support greater cable lengths between network devices than twisted pair cable. The two types of coaxial cabling are thick coaxial and thin coaxial.
Thin coaxial cable is also referred to as thinnet. 10Base2 refers to the specifications for thin coaxial cable carrying Ethernet signals. The 2 refers to the approximate maximum segment length being 200 meters. In actual fact the maximum segment length is 185 meters. Thin coaxial cable has been popular in school networks, especially linear bus networks.
Thick coaxial cable is also referred to as thicknet. 10Base5 refers to the specifications for thick coaxial cable carrying Ethernet signals. The 5 refers to the maximum segment length being 500 meters. Thick coaxial cable has an extra protective plastic cover that helps keep moisture away from the center conductor. This makes thick coaxial a great choice when running longer lengths in a linear bus network. One disadvantage of thick coaxial is that it does not bend easily and is difficult to install.

Coaxial Cable Connectors

The most common type of connector used with coaxial cables is the Bayone-Neill-Concelman (BNC) connector (See fig. 4). Different types of adapters are available for BNC connectors, including a T-connector, barrel connector, and terminator. Connectors on the cable are the weakest points in any network. To help avoid problems with your network, always use the BNC connectors that crimp, rather screw, onto the cable.
Fig. 4. BNC connector

Fiber Optic Cable

Fiber optic cabling consists of a center glass core surrounded by several layers of protective materials (See fig. 5). It transmits light rather than electronic signals eliminating the problem of electrical interference. This makes it ideal for certain environments that contain a large amount of electrical interference. It has also made it the standard for connecting networks between buildings, due to its immunity to the effects of moisture and lighting.
Fiber optic cable has the ability to transmit signals over much longer distances than coaxial and twisted pair. It also has the capability to carry information at vastly greater speeds. This capacity broadens communication possibilities to include services such as video conferencing and interactive services. The cost of fiber optic cabling is comparable to copper cabling; however, it is more difficult to install and modify. 10BaseF refers to the specifications for fiber optic cable carrying Ethernet signals.
The center core of fiber cables is made from glass or plastic fibers (see fig 5). A plastic coating then cushions the fiber center, and Kevlar fibers help to strengthen the cables and prevent breakage. The outer insulating jacket made of Teflon or PVC.
Fig. 5. Fiber optic cable
There are two common types of fiber cables -- single mode and multimode. Multimode cable has a larger diameter; however, both cables provide high bandwidth at high speeds. Single mode can provide more distance, but it is more expensive.

Specification
Cable Type
10BaseT
Unshielded Twisted Pair
10Base2
Thin Coaxial
10Base5
Thick Coaxial
100BaseT
Unshielded Twisted Pair
100BaseFX
Fiber Optic
100BaseBX
Single mode Fiber
100BaseSX
Multimode Fiber
1000BaseT
Unshielded Twisted Pair
1000BaseFX
Fiber Optic
1000BaseBX
Single mode Fiber
1000BaseSX
Multimode Fiber

 

 


 

Network Cabling Testing

 

          Testing has a major significance for the correct functionality of network cabling. Testing devices are able to measure installed components and determine whether all requirements defined in the international standards necessary for reliable operation have been met. For category 5e and Category 6 the following main parameters are measured:

 

Wire Map

 

          This parameter checks the correct termination of cable wires in telecommunication outlets and patch panels, including the shielding in STP cabling. At the same time, it checks the signal throughput on the whole cable length-i.e.; it is able to show any open-circuit or short circuit faults. The Wire Map parameter is very important but in itself it cannot ensure the correct functionality of an installed computer network.

 

 

T568A and T568B map schemes:


 


T568A                                                             T568B

1.      White-green                                           1.      White-orange                                                       

2.      Green                                                     2.      Orange

3.      White-orange                                         3.      White-green

4.      Blue                                                        4.      Blue

5.      White-Blue                                             5.      White-blue

6.      Orange                                                   6.      Green

7.      White Brown                                           7.      White-brown

8.      Brown                                                     8.      Brown


There are two methods set by the TIA, T568A and T568B. Which one you use will depend on what is being connected. A straight-through cable is used to connect two different-layer devices (e.g. a switch and a PC). Two like devices normally require a cross-over cable. The difference between the two is that a straight-through cable has both ends wired identically with 568B, while a cross-over cable has one end wired 568A and the other end wired 568B.


Walang komento:

Mag-post ng isang Komento